Electric Valve Actuator with Time-tested Brawn and Sophisticated Control

EIM M2CP actuators were introduced in 1979 as the Series 2000 electric valve actuator. Since that time, the model has added increasingly sophisticated control capabilities—but retained all the mechanical strengths that have established its three decade record of reliability. As a result, many parts can interchange across the entire M2CP/Series 2000 range, and upgrades are remarkably easy to retrofit.

The robust mechanical design of the M2CP is evident in its ductile iron gear case, bronze worm gear, and heat-treated alloy steel worm and modular control packages.


For more information, visit https://flowcontrol.processcontrolsolutions.com/products/suppliers/eim-actuators/ or call (800) 462-5769.

Hy-Lok Instrument Valve and Fitting Fluid Compatibility Guide

Hy-Lok Instrument Valve and Fitting
This guide represents the chemical resistance of the raw materials used to manufacture products by the Hy-Lok Corporation. In general, media characteristics like temperature fluctuation, concentration, high velocity and abrasion will affect corrosion rating. Before applying this guide, many factors that may affect the compatibility ratings should be considered, and users should test under their own operating conditions to determine which materials can be used.

The Fluid Compatibility Guide provides a rating of compatibility of common metals and elastomers to various chemicals and compounds found in industry. The Hy-Lok Corporation Guide contains data assembled from a variety of sources within the metal and chemical industry. However, due to variations in each user application, we do not make any direct or implied warranty as to any specific use or application based upon the performance of any material in this guide. This guide is for reference only and Hy-Lok Corporation is not responsible for the accuracy of the information therein.

For more information on Hy-Lok fittings, visit Process Control Solutions here.

The Piping & Instrumentation Diagram (P&ID)

The Piping & Instrumentation Diagrams (P&ID), or sometimes called Process and Control Flow Diagrams, are schematic representations of a process control system, used to illustrate the piping system, process flow, installed equipment, instrumentation, and functional relationships among all the system components.

They provide information that include component identification how instruments are connected where instruments are located and their function within a process and intended to provide a comprehensive picture of all piping and associated hardware, including physical branches, valves, equipment, instrumentation and interlocks. The P&ID employs a set of standard symbols representing each component of the system such as instruments, piping, motors, pumps, etc. The use of standard symbols provides a universal depiction that can be read and understood by operators, technicians, outside contractors, and other similarly trained individuals.

P&ID’s can be very detailed and are generally the primary source from where instrument and equipment lists are generated, also being a very handy reference for maintenance and upgrades. P&ID diagrams assists technicians when troubleshooting and monitoring specific processes. They also play an important early role in safety planning by enabling an understanding of the operating states and relationships of all components in the system.

https://processcontrolsolutions.com
(800) 462-5769

Value-added Distributor and Application Specialist of Process Equipment and Control Products

With decades of accumulated knowledge in fluid power, flow control, instrumentation and control systems, Process Control Solutions is your preferred source for innovative solutions for virtually any process application requirement.

Control Systems

Turn-key process automation and systems integration services. Design, specification, fabrication, configuration, programming and start-up of your project.

Fluid Systems

Custom fluid power systems, test stands, and special machinery serving the industrial, mobile, marine, power generation, gas & oil production, agriculture, military, and construction industries.

Fluid Power

Innovative and unique fluid power equipment, control products and services for the fluid power and process industry.

Flow Control

Providing industrial valves, valve actuation, pressure relief devices, limit switches, positioners, and other related process equipment to the refining, chemical, food & beverage, agriculture processing, ethanol, steel, pipeline, power, paper, water, waste water and mining industries.

Field Services and Repair

A comprehensive list of services, from on-site and off-site repair, to maintenance and installation, to product sales and application support. Field service experts, with stocked vehicles, available 24/7 throughout Missouri and Central and Southern Illinois.

https://processcontrolsolutions.com
(800) 462-5769


Easytork Pneumatic Actuator Double-acting and Fail-safe Conversion

Easytork Pneumatic Actuator
Easytork Pneumatic Actuator
Easytork manufactures high-performance, quarter-turn rotary pneumatic vane actuators.  Easytork's patented pneumatic valve actuator improves on the reliability and direct mount ability of vane actuators while simplifying vane’s single-acting design so that vane actuators can be smaller, lighter, and more competitive than single-acting rack & pinions actuators on every measurable scale.

The video below demonstrates how to convert double acting actuators to fail-safe mode.

Process Control Solutions
https://processcontrolsolutions.com
(800) 462-5769

The Process Equipment Sales Engineer - Your Valuable Resource

Sales Engineers
Next time you have a tough process control challenge,
call your local process equipment Sales Engineer.
Process control equipment is often sold with the support of Sales Engineers working at the local or regional level. Realizing what these specialists have to contribute when specifying, purchasing and installing process control equipment, and taking advantage of their knowledge and talent, will save you time, keep budgets in line, and deliver a better project outcome . Here's how:

Experience: 
Whether you're a project engineer, maintenance manager, specifying engineer, or purchasing agent, you may be working with a piece of process equipment of which you have little first-hand experience. Past exposure or training may provide an overall understanding, but you're missing the detail. It's impossible for one person to know it all. Safety, cost, and quality are tied to questions ranging from optimal valve selection for a given application, to proper heat exchanger sizing, to the limitations of certain kinds of pressure transmitters. For this reason, it's important to remember one of your best assets - the Technical Sales Rep.

Product Knowledge:
Specialized Sales Engineers, by the nature of their job, have product knowledge that is both broad and deep. They've applied every type of valve, actuator, instrument, and pneumatic device known. They've dealt with many other process plants who have similar needs.They are also current on new products, their capabilities and their proper application. Unlike information available on the Web, Sales Engineers can get advanced notice of product obsolescence and replacement options, new technologies coming to the market, and more. Also, because they are exposed to so many different types of applications and situations, sales engineers are a wealth of tacit knowledge that they readily share with their customers.

Access:
Through a technical Sales Engineer, you may be able to look “behind the scenes” with a particular manufacturer and garner important information not publicly available. Sales reps deal with people, making connections between customers and manufacturer's support personnel that may not normally be public facing. They make it their business to know what’s going on with products, companies, and industries.

Of course, Sales Engineers will be biased. Any solutions proposed are likely to be based upon the products sold by the representative. But the best sales people will share the virtues of their products openly and honestly, and tell you when they do not have the right product for your application. This is where the discussion, consideration and evaluation of several solutions becomes part of achieving the best project outcome.

As a stakeholder in your process operations, it's highly recommended you develop a professional, mutually beneficial relationship with a process equipment specialist. Look at a relationship with the local Sales Engineer as symbiotic. Their success, and your success, go hand-in-hand.

Switch and Valve Concepts Used in Fluid Power

Fluid valves
Pneumatic valves used in fluid power
(ASCO Numatics)
The direction in which a cylinder piston will move or a fluid motor will rotate can be controlled by the direction of flow into the device. A cylinder is said to reciprocate if it's piston travels back and forth being reversed automatically at each end of its stroke without human operator attention. In an air cylinder, automatic reciprocation can be stopped by an electrical action or by a shutoff valve in the airline. If stopped by electrical action it will continue to travel until it reaches one end or the other of its stroke. If stopped by shutting off the air, it can be made to stop anywhere in its stroke.
Cylinders and Actuators
Cylinders and Actuators
(ASCO Numatics)

Fluid valves are typically described as being either in the open or closed position. As described, the open position allows the flow of fluid, while the closed position prevents flow. The normal position of the valve is defined as the position of the valve when its spool is unshifted and the power is off. This means that any mechanical actuators, such as springs, are in their non-actuated positions. Electrical actuators, such as solenoids, are powered off. 

The normal position can sometimes be referred to as the unshifted, de-energized, or unactivated position. Valves that do not have mechanical or electrical actuators do not have a normal position because they must be manually moved. When shifted they remain in that state until manually shifted to another position. The terms normally opened and normally closed are used to describe the condition of a valve when it is in the normal position.

Watch the video below for a better understanding of these concepts.

For more information on fluid power components, or on fluid systems, contact Process Control Solutions by visiting https://processcontrolsolutions.com or calling (800) 462-5769.