Showing posts with label instrumentation. Show all posts
Showing posts with label instrumentation. Show all posts

Press Release: Process Control Solutions Acquires Durkin Equipment Company



ST. LOUIS, MO: Process Control Solutions has announced the acquisition of Durkin Equipment Co., a premier provider of systems integration services and process instrumentation in St. Louis since 1958. The addition of Durkin to Process Control Solutions adds expanded systems capabilities, deeper instrumentation knowledge and a wider range of branded products, including ABB Process Instrumentation, Analyzers, and ABB Process Control products.

“This acquisition allows us to add more value to our customers. A wider selection of process automation solutions, specifically instrumentation, and the addition of Durkin’s ABB instrumentation experts to our team means that our customers get more complete choices at better rates. Today’s manufacturing environment is competitive and every dollar counts, so being able to offer value-added products and services and a broader spectrum of solutions makes a big difference,” says Bill Morgan, Managing Member of Process Control Solutions.

“We couldn’t think of a better company to join. Process Control Solutions has really impressed us 
with their commitment to their customer’s success. Durkin is a family owned business built on reputation. We take deep pride in being the go-to instrumentation resource and systems provider for our clients, and we are excited to be joining a company that values customer relationships as much as we do,” adds Jere Fulghum, President of Durkin.

Durkin was officially acquired by Process Control Solutions on August 18th, 2018.

For any questions or comments, please contact frontdesk@processcontrolsolutions.com
------
Process Controls Solutions (https://processcontrolsolutions.com/) is a value-added distributor and application specialist of process equipment and control products. PCS also provides systems integration services, specializing in the design, build, and startup of process and industrial control systems. With decades of experience supporting fluid power, flow control, instrumentation and control system needs, their process experts can provide innovative solutions for virtually any process application requirement.

Durkin Equipment Company (http://www.durkininc.com/) has been supplying manufacturers with process control instrumentation since 1958. They are the trusted ABB supplier in the mid-western region, and offer a range of licensed process instrumentation products including butterfly valves, flow meters, temperature sensors, and more. From instrument calibration to emergency service & repairs, project startups, and instrumentation software, Durkin is your top choice for process instrumentation supplies in the St. Louis region.

###
Contact: Bill Morgan
(800) 462-5769
frontdesk@processcontrolsolutions.com

Transmitters Used in Industrial Process Control

Pressure transmitter
Pressure transmitter (ifm)
Transmitter is a term used to describe a family of process control field devices. They receive input from a connected process sensor, then convert the sensor signal to an output signal using a transmission protocol. The output signal is passed to a monitoring, control, or decision device for use in documenting, regulating, or monitoring a process or operation.

In general, transmitters accomplish three steps, including converting the initial signal twice. The first step is the initial conversion which alters the input signal to make it linear. After an amplification of the converted signal, the second conversion changes the signal into either a standard electrical or pneumatic output signal that can be utilized by receiving instruments and devices. The third and final step is the actual output of the electrical or pneumatic signal to utilization equipment - controllers, PLC, recorder, etc.

Transmitters are available for almost every measured parameter in process control, and are often referred to according to the process condition which they measure.
Level transmitter
Level transmitters (ifm)


Some examples.

  • Pressure transmitters
  • Temperature transmitters
  • Flow transmitters
  • Level transmitters
  • Vibration transmitters
  • Current, voltage & power transmitters
  • PH, conductivity, dissolved gas transmitters, etc.
Output signals from transmitters, when electrical, often are either voltage (1-5 or 2-10 volts DC) or current (4-20 mA). Power requirements can vary among products, but are often 110/220 VAC or 24 VDC.  Low power consumption by electrical transmitters can permit some units to be "loop powered", operating from the voltage applied to the output current loop. These devices are also called "two-wire transmitters" because only two conductors are connected to the unit. Unlike the two wire system which only needs two wires to power the transmitter and carry the analog signal output, the four-wire system requires four separate conductors, with one pair serving as the power supply to the unit and a separate pair providing the output signal path. Pneumatic transmitters, while still in use, are continuously being supplanted by electrical units that provide adequate levels of safety and functionality in environments previously only served by pneumatic units.
Pressure transmitter
Pressure transmitter
(Winters)

Many transmitters are provided with higher order functions in addition to merely converting an input signal to an output signal. On board displays, keypads, Bluetooth connectivity, and a host of industry standard communication protocols can also be had as an integral part of many process transmitters. Other functions that provide alarm or safety action are more frequently part of the transmitter package, as well.

Wireless transmitters are also available, with some operating from battery power and negating the need for any wired connection at all. Process transmitters have evolved from simple signal conversion devices to higher functioning, efficient, easy to apply and maintain instruments utilized for providing input to process control systems.

To lean more about transmitters, visit https://flowcontrol.processcontrolsolutions.com/ or call Process Control Solutions at 800-528-8997.

The Piping & Instrumentation Diagram (P&ID)

The Piping & Instrumentation Diagrams (P&ID), or sometimes called Process and Control Flow Diagrams, are schematic representations of a process control system, used to illustrate the piping system, process flow, installed equipment, instrumentation, and functional relationships among all the system components.

They provide information that include component identification how instruments are connected where instruments are located and their function within a process and intended to provide a comprehensive picture of all piping and associated hardware, including physical branches, valves, equipment, instrumentation and interlocks. The P&ID employs a set of standard symbols representing each component of the system such as instruments, piping, motors, pumps, etc. The use of standard symbols provides a universal depiction that can be read and understood by operators, technicians, outside contractors, and other similarly trained individuals.

P&ID’s can be very detailed and are generally the primary source from where instrument and equipment lists are generated, also being a very handy reference for maintenance and upgrades. P&ID diagrams assists technicians when troubleshooting and monitoring specific processes. They also play an important early role in safety planning by enabling an understanding of the operating states and relationships of all components in the system.

https://processcontrolsolutions.com
(800) 462-5769

Diaphragm Seals Protect Your Pressure Instruments, Your Plant, and Your People

Diaphragm seal
Diaphragm seal (Wika)
Pressure measurement is a common element of industrial operations or control systems. Fluid processing can often involve media that is potentially harmful to pressure sensing devices. The media may be corrosive to the sensor material, or other media properties may impact the performance or usable life of the instrument. In process control environments, diaphragm seals play a role in protecting items like pressure sensors from damage by process fluids. The diaphragm seal is a flexible membrane that seals across the connecting path to a sensor and isolates the sensor from the process media. System pressure crosses the barrier without inhibition, enabling accurate measurement, but the process fluid does not. Typical materials composing diaphragm seals are elastomers, with a wide variety of specific materials available to accommodate almost every application.

In the operating principle of the diaphragm seal, the sealed chamber created between the diaphragm and the instrument is filled with an appropriate fluid, allowing for the transfer of pressure from the process media to the protected sensor. The seals are attached to the process by threaded, open flange, sanitary, or other connections. Diaphragm seals are sometimes referred to as chemical seals or gauge guards. Stainless steel, Hastelloy, Monel, Inconel, and titanium are used in high pressure environments, and some materials are known to work better when paired with certain chemicals.

Sanitary processes, such as food, beverage, and pharmaceuticals, use diaphragm seals to prevent the
Sanitary Diaphragm seal
Sterile, diaphragm inline seal
with temperature measurement.
(Wika)
accumulation of process fluid in pressure ports, a possible source of contamination. If such a buildup were to occur, such as milk invading and lodging in a port on a pressure gauge, the resulting contamination compromises the quality and purity of successive batches. Extremely pure process fluids, like ultra-pure water, could be contaminated by the metal surface of a process sensor. Some pneumatic systems rely on the elimination of even the smallest pressure fluctuations, and diaphragm seals prevent those by ensuring the separation of the process materials from the sensors.

Diaphragm seals are not without some application concerns, and devices are now built to address and counter many potential issues related to the use of diaphragm seals with process monitoring instruments and equipment. Products seek to eliminate any and all dead space, allow for continuous process flow, and are self-cleaning thanks to continuous flow design. Some high pressure seals come equipped with anti-clogging features, accomplished by the elimination of internal cavities while protecting gauges. Multi-purpose seals reduce temperature influence and improve instrument performance while pinpointing and diffusing areas of high stress. These pre-emptive measures result in longer instrument life-cycles and improved performance while ensuring protection from corrosion.

There are numerous options and available diaphragm seal variants. Share your application specifics with a product specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.

New Flow Control Products Video

We just published a new flow control products video for our YouTube channel. We hope you enjoy.