Easytork Pneumatic Actuator Double-acting and Fail-safe Conversion

Easytork Pneumatic Actuator
Easytork Pneumatic Actuator
Easytork manufactures high-performance, quarter-turn rotary pneumatic vane actuators.  Easytork's patented pneumatic valve actuator improves on the reliability and direct mount ability of vane actuators while simplifying vane’s single-acting design so that vane actuators can be smaller, lighter, and more competitive than single-acting rack & pinions actuators on every measurable scale.

The video below demonstrates how to convert double acting actuators to fail-safe mode.

Process Control Solutions
https://processcontrolsolutions.com
(800) 462-5769

The Process Equipment Sales Engineer - Your Valuable Resource

Sales Engineers
Next time you have a tough process control challenge,
call your local process equipment Sales Engineer.
Process control equipment is often sold with the support of Sales Engineers working at the local or regional level. Realizing what these specialists have to contribute when specifying, purchasing and installing process control equipment, and taking advantage of their knowledge and talent, will save you time, keep budgets in line, and deliver a better project outcome . Here's how:

Experience: 
Whether you're a project engineer, maintenance manager, specifying engineer, or purchasing agent, you may be working with a piece of process equipment of which you have little first-hand experience. Past exposure or training may provide an overall understanding, but you're missing the detail. It's impossible for one person to know it all. Safety, cost, and quality are tied to questions ranging from optimal valve selection for a given application, to proper heat exchanger sizing, to the limitations of certain kinds of pressure transmitters. For this reason, it's important to remember one of your best assets - the Technical Sales Rep.

Product Knowledge:
Specialized Sales Engineers, by the nature of their job, have product knowledge that is both broad and deep. They've applied every type of valve, actuator, instrument, and pneumatic device known. They've dealt with many other process plants who have similar needs.They are also current on new products, their capabilities and their proper application. Unlike information available on the Web, Sales Engineers can get advanced notice of product obsolescence and replacement options, new technologies coming to the market, and more. Also, because they are exposed to so many different types of applications and situations, sales engineers are a wealth of tacit knowledge that they readily share with their customers.

Access:
Through a technical Sales Engineer, you may be able to look “behind the scenes” with a particular manufacturer and garner important information not publicly available. Sales reps deal with people, making connections between customers and manufacturer's support personnel that may not normally be public facing. They make it their business to know what’s going on with products, companies, and industries.

Of course, Sales Engineers will be biased. Any solutions proposed are likely to be based upon the products sold by the representative. But the best sales people will share the virtues of their products openly and honestly, and tell you when they do not have the right product for your application. This is where the discussion, consideration and evaluation of several solutions becomes part of achieving the best project outcome.

As a stakeholder in your process operations, it's highly recommended you develop a professional, mutually beneficial relationship with a process equipment specialist. Look at a relationship with the local Sales Engineer as symbiotic. Their success, and your success, go hand-in-hand.

Switch and Valve Concepts Used in Fluid Power

Fluid valves
Pneumatic valves used in fluid power
(ASCO Numatics)
The direction in which a cylinder piston will move or a fluid motor will rotate can be controlled by the direction of flow into the device. A cylinder is said to reciprocate if it's piston travels back and forth being reversed automatically at each end of its stroke without human operator attention. In an air cylinder, automatic reciprocation can be stopped by an electrical action or by a shutoff valve in the airline. If stopped by electrical action it will continue to travel until it reaches one end or the other of its stroke. If stopped by shutting off the air, it can be made to stop anywhere in its stroke.
Cylinders and Actuators
Cylinders and Actuators
(ASCO Numatics)

Fluid valves are typically described as being either in the open or closed position. As described, the open position allows the flow of fluid, while the closed position prevents flow. The normal position of the valve is defined as the position of the valve when its spool is unshifted and the power is off. This means that any mechanical actuators, such as springs, are in their non-actuated positions. Electrical actuators, such as solenoids, are powered off. 

The normal position can sometimes be referred to as the unshifted, de-energized, or unactivated position. Valves that do not have mechanical or electrical actuators do not have a normal position because they must be manually moved. When shifted they remain in that state until manually shifted to another position. The terms normally opened and normally closed are used to describe the condition of a valve when it is in the normal position.

Watch the video below for a better understanding of these concepts.

For more information on fluid power components, or on fluid systems, contact Process Control Solutions by visiting https://processcontrolsolutions.com or calling (800) 462-5769.

What Is A High Performance Butterfly Valve?

high performance butterfly valve
High performance butterfly valve.
(Pratt Industrial)
Industrial process control applications can present stringent and challenging performance requirements for the physical equipment and components that comprise the process chain. The valves employed in fluid based operations need to be resistant to the impact of extreme fluid conditions, requiring careful design and selection consideration to assure proper performance and safety levels are maintained in a predictable way.

Industrial butterfly valves intended for extreme applications are generally referred to as high performance butterfly valves (HPBV). While there are plenty of published and accepted standards for industrial valves, one does not exist to precisely define what constitutes a high performance valve.

So, how do you know when to focus valve selection activities on high performance butterfly valves, as opposed to those rated for general purpose? There are a number of basic criteria that might point you in that direction:
  • Extreme media or environmental temperature or pressure
  • High pressure drop operation that may cause cavitation
  • Rapid or extreme changes to inlet pressure
  • Certain types or amounts of solids contained in the fluid
  • Corrosive media
Certainly, any of these criteria might be found in an application serviceable by a general purpose valve, but their presence should be an indicator that a closer assessment of the fluid conditions and commensurate valve requirements is in order. The key element for a process stakeholder is to recognize when conditions are contemplated that can exceed the capabilities of a general purpose valve, leading to premature failure in control performance or catastrophic failure that produces an unsafe condition. Once the possibility of an extreme or challenging condition is identified, a careful analysis of the range of operating conditions will reveal the valve performance requirements.

There are numerous manufacturers of high performance butterfly valves. Pratt Industrial manufactures high-quality resilient-seated, high performance, and triple offset butterfly valves. Construction materials include carbon steel and stainless steel. Their TE Series triple offset valve offers premium, zero-leakage seating capability even in severe service applications.

You can always get more information and discuss your special requirements with a valve specialist. They have application experience and access to technical resources that can help with selecting the right valve components to meet your severe service and high performance applications.

For more information, contact Process Control Solutions by calling (800) 462-5769 or by visiting https://processcontrolsolutions.com.

Flame Testing a WIKA Industrial Pressure Gauge vs. Competition

The video below shows the results of laboratory flame testing of the WIKA XSEL process pressure gauge against those of a competitor.

The test first exposes both gauges to a 10 second burn, followed by a 30 second burn. Then, both gauges are exposed to the flame again over an extended period of time.

You can see by the time lapse video that the WIKA gauge maintains stability, does not melt, and does not continue to burn.

https://processcontrolsolutions.com
(800) 462-5769

Fluid Power Applications in Water and Wastewater Treatment Plants

In plants all across the Midwest, ASCO Numatics solenoid valves, cylinders, manifolds, and other fluid automation devices provide ultra-reliable service in water and wastewater treatment facilities. ASCO Numatics has a well-earned, 50 year reputation as a key supplier for OEMs, engineering contractors, valve assemblers, and end users seeking dependable treatment of potable water and wastewater.


Some of the most common applications to use ASCO Numatics products are:
  • Air Preparation
  • Aeration and Odor Control
  • Bio Refinery Solutions
  • Carrier Water Control
  • Disinfection and Filtration
  • Process Valve Piloting
  • Seal Water Control
  • Solids Dewatering
For additional information on water and wastewater treatment applications, read the document below. For assistance with any ASCO Numatics requirement, contact Process Control Solutions by calling (800) 462-5769 or visiting https://fluidpower.processcontrolsolutions.com.

The Fundamentals of Fluid Power

Fundamentals of Fluid PowerThe purpose of fluid power is to transmit power from one location to another. In the mid-1600s Blaise Pascal, a French mathematician, made a very important contribution in the field of fluid motion. This contribution, known as Pascal's Law, relates the transfer of pressure through a fluid. Pascale determined that a contained, pressurized fluid will exert pressure equally in all directions. Pascal's Law states that pressure set up in a confined body of fluid acts equally in all directions and always at right angles to the containing surfaces.

Another important property of fluid mechanics was discovered in the late 1600s by Robert Boyle, an Irish physicist. Boyle's Law is an experimental gas law which describes how the pressure of a gas increases as the volume of gas decreases. A modern statement of Boyle's law is the absolute pressure of a confined body of gas varies inversely as its volume, provided it's temperature remains constant. In a physical system this means that as the volume decreases, the pressure increases. Similarly, as the volume increases, the pressure decreases. Boyle's Law can be expressed mathematically as the pressure at state 1 times the volume at state 1, is equal to the pressure at state 2 times the volume at state 2. This is true as long as both the temperature and mass, or amount of gas, remains constant.

In the late 1700s Jacques Charles, a French scientist and mathematician, discovered an important rule regarding gases under pressure. Charles's Law, also known as the Law of Volumes, is an experimental gas law which describes how gases tend to expand when heated. It states that if the pressure of a gas is constant, and it's temperature is raised, the volume will also be raised by the same ratio. Additionally, the inverse is true. If the pressure of a gas is constant, and the temperature is lowered, the volume will also lower. Charles's Law can be expressed mathematically as the ratio of the temperature at state 1 to the volume at state 1, is equal to the ratio of the temperature at state 2 to the volume at state 2. This law is true as long as the pressure and mass remain constant.

In the mid-1700s, Danielle Bernoulli discovered another very powerful rule in the field of fluid mechanics. Known as Bernoulli's Principle, this rule is related to the Theory of Conservation of Energy, which states that energy can neither be created nor destroyed. In this fluid system, pressure is potential energy and fluid flow is kinetic energy. Bernoulli's Principle states that an increase in the speed of an incompressible fluid occurs simultaneously with a decrease in pressure.

Toward the end of the video below, this is illustrated by the flow of water through a pipe. The volume of water flow through all three sections is the same when the waters flow is restricted. In Section B, the speed of the water increases to maintain the same amount of volumetric flow. This increase of speed simultaneously causes a decrease in pressure. When the flow of water reaches section C, the inverse occurs. The water flow decreases and the pressure increases. This rule can also apply to the types of energy present in the system. As the pressure decreases in Section B, the potential energy converts into kinetic energy. This increases the speed of water flow and decreases the pressure. When the water reaches section C, the kinetic energy is converted back to potential energy. This is illustrated by the decrease in speed of the water flow and it's simultaneous increase in pressure.

https://processcontrolsolutions.com 
(800) 462-5769